关注

数据库事务隔离级别与Spring传播行为深度解析

干了多年Java开发,我可以明确告诉你:事务问题是线上最隐蔽的bug来源。很多人以为加了@Transactional就万事,结果数据不一致、死锁、性能问题接踵而至。今天咱们就彻底搞清楚事务隔离级别和传播行为这两个看似简单实则坑多的概念。

目录

🎯 先说说我被事务"坑惨"的经历

✨ 摘要

1. 事务不是"要么全做,要么不做"那么简单

1.1 ACID原则的真相

1.2 事务的"不可能三角"

2. 四种隔离级别深度解析

2.1 并发问题三兄弟

2.2 隔离级别对比

2.3 MVCC:隔离级别的实现核心

3. 锁机制:事务隔离的基石

3.1 MySQL锁类型详解

3.2 死锁分析与解决

4. Spring传播行为七剑客

4.1 传播行为定义

4.2 实际工作流程

4.3 实战测试

5. 性能影响与优化

5.1 隔离级别性能测试

5.2 传播行为性能测试

6. 企业级实战案例

6.1 电商订单支付系统

6.2 批量数据处理

7. 监控与故障排查

7.1 事务监控配置

7.2 事务监控代码

7.3 慢事务排查

8. 最佳实践总结

8.1 我的"事务军规"

📜 第一条:合理选择隔离级别

📜 第二条:正确使用传播行为

📜 第三条:控制事务粒度

📜 第四条:做好监控告警

8.2 生产环境配置

9. 常见问题解决方案

9.1 事务不生效的7个原因

9.2 死锁预防方案

10. 最后的话

📚 推荐阅读

官方文档

源码学习

最佳实践

监控工具


🎯 先说说我被事务"坑惨"的经历

三年前我们做电商秒杀系统,压测时好好的,一上线就出问题。用户投诉重复扣款,一查发现是并发下的事务隔离问题。更绝的是,有次对账发现少了十几万,排查三天发现是有人把@Transactional用在了private方法上。

去年做转账系统,测试环境跑得好好的,生产环境偶尔报死锁。DBA说是事务隔离级别设置不对,我们改成READ_COMMITTED,结果出现了幻读问题。

上个月优化一个批处理任务,把大事务拆成小事务,结果性能不升反降。排查发现是事务传播行为用错了,每个小事务都创建新连接。

这些事让我明白:不懂事务原理的程序员,就是在给系统埋雷,早晚要炸

✨ 摘要

数据库事务隔离级别和Spring传播行为是保证数据一致性的关键技术。本文深度解析四种隔离级别的实现原理、适用场景和性能影响,以及Spring七种传播行为的工作机制。通过源码分析、并发测试和实战案例,揭示事务问题的根本原因和解决方案,提供企业级事务配置的最佳实践。

1. 事务不是"要么全做,要么不做"那么简单

1.1 ACID原则的真相

很多人背得出ACID,但真懂吗?

-- ACID在MySQL InnoDB中的实现
START TRANSACTION;

-- Atomicity(原子性):undo log
-- 实现:每条数据修改前,先把旧值写入undo log
UPDATE account SET balance = balance - 100 WHERE id = 1;
-- 如果失败,用undo log回滚

-- Consistency(一致性):外键、约束
-- 实现:数据库约束 + 应用层校验
ALTER TABLE account ADD CONSTRAINT balance_non_negative 
    CHECK (balance >= 0);

-- Isolation(隔离性):MVCC + 锁
-- 实现:多版本并发控制
SELECT * FROM account WHERE id = 1;
-- 读取的是事务开始时的快照

-- Durability(持久性):redo log + 双写缓冲
-- 实现:先写日志,后写数据
COMMIT;
-- 先写redo log,再更新数据页

代码清单1:ACID在MySQL中的实现

用图表示事务处理流程:

图1:事务ACID实现流程

1.2 事务的"不可能三角"

事务设计中有个经典难题:一致性 vs 隔离性 vs 性能,你只能选两个。

选择

结果

适用场景

强一致性 + 强隔离性

性能差

银行转账

强一致性 + 高性能

隔离性弱

读多写少

强隔离性 + 高性能

一致性弱

缓存系统

现实案例:我们做的支付系统,开始用SERIALIZABLE,TPS只有50。后来根据业务特点,拆分不同场景用不同隔离级别,TPS提升到2000。

2. 四种隔离级别深度解析

2.1 并发问题三兄弟

先理解三个并发问题:

-- 1. 脏读(Dirty Read):读到未提交的数据
-- 事务A
START TRANSACTION;
UPDATE users SET balance = balance - 100 WHERE id = 1;  -- 未提交

-- 事务B(READ UNCOMMITTED)
START TRANSACTION;
SELECT balance FROM users WHERE id = 1;  -- 读到-100,脏读!
COMMIT;

-- 2. 不可重复读(Non-Repeatable Read):同一事务内两次读取结果不同
-- 事务A
START TRANSACTION;
SELECT * FROM users WHERE id = 1;  -- 第一次读

-- 事务B
UPDATE users SET name = 'Bob' WHERE id = 1;
COMMIT;

-- 事务A
SELECT * FROM users WHERE id = 1;  -- 第二次读,结果变了!
COMMIT;

-- 3. 幻读(Phantom Read):同一查询返回不同行数
-- 事务A
START TRANSACTION;
SELECT COUNT(*) FROM users WHERE age > 18;  -- 返回10

-- 事务B
INSERT INTO users(name, age) VALUES ('Charlie', 20);
COMMIT;

-- 事务A
SELECT COUNT(*) FROM users WHERE age > 18;  -- 返回11,幻读!
COMMIT;

代码清单2:三种并发问题示例

2.2 隔离级别对比

MySQL的四种隔离级别:

-- 查看当前隔离级别
SELECT @@transaction_isolation;

-- 设置会话隔离级别
SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED;

-- 四种级别对比
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;     -- 可能脏读
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;       -- 可能不可重复读
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;      -- 可能幻读(MySQL用MVCC解决)
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;         -- 完全串行

用表格对比更清晰:

隔离级别

脏读

不可重复读

幻读

性能

实现机制

READ UNCOMMITTED

✅ 可能

✅ 可能

✅ 可能

⭐⭐⭐⭐⭐

无锁,直接读最新数据

READ COMMITTED

❌ 不可能

✅ 可能

✅ 可能

⭐⭐⭐⭐

语句级快照

REPEATABLE READ

❌ 不可能

❌ 不可能

✅ 可能

⭐⭐⭐

事务级快照 + 间隙锁

SERIALIZABLE

❌ 不可能

❌ 不可能

❌ 不可能

全表锁 + 范围锁

注意:MySQL的REPEATABLE READ通过Next-Key Locks解决了幻读问题。

2.3 MVCC:隔离级别的实现核心

多版本并发控制(MVCC)是理解隔离级别的关键:

// MVCC的简化实现原理
public class MVCCRecord {
    // 每个数据行有多个版本
    private long trxId;          // 创建该版本的事务ID
    private long rollPointer;    // 指向上一个版本的指针
    private Object data;         // 实际数据
    private boolean deleted;     // 是否被删除
}

// 读取时的可见性判断
public boolean isVisible(long readViewTrxId, long recordTrxId) {
    // 1. 如果记录是由当前事务创建
    if (recordTrxId == readViewTrxId) {
        return !deleted;  // 自己创建的可见(除非已删除)
    }
    
    // 2. 如果记录在ReadView创建时还未提交
    if (recordTrxId < readViewTrxId) {
        // 需要检查是否已提交
        return isCommitted(recordTrxId) && !deleted;
    }
    
    // 3. 如果记录在ReadView创建后才创建
    return false;  // 不可见
}

代码清单3:MVCC实现原理

MVCC的工作流程:

图2:MVCC多版本读取

3. 锁机制:事务隔离的基石

3.1 MySQL锁类型详解

-- 1. 行锁(Record Locks)
-- 锁住单行记录
SELECT * FROM users WHERE id = 1 FOR UPDATE;
-- 在id=1的记录上加X锁

-- 2. 间隙锁(Gap Locks)
-- 锁住一个范围,但不包括记录本身
SELECT * FROM users WHERE age BETWEEN 20 AND 30 FOR UPDATE;
-- 锁住(20, 30)这个区间

-- 3. Next-Key Locks = 行锁 + 间隙锁
-- MySQL默认的锁,解决幻读
SELECT * FROM users WHERE id > 10 FOR UPDATE;
-- 锁住(10, +∞)整个范围

-- 4. 意向锁(Intention Locks)
-- 表级锁,表示"我想要加行锁"
-- IS: 意向共享锁
-- IX: 意向排他锁

代码清单4:MySQL锁类型

3.2 死锁分析与解决

死锁是事务中最头疼的问题:

-- 死锁案例
-- 事务A
START TRANSACTION;
UPDATE account SET balance = balance - 100 WHERE id = 1;  -- 锁住id=1
UPDATE account SET balance = balance + 100 WHERE id = 2;  -- 等待锁

-- 事务B
START TRANSACTION;
UPDATE account SET balance = balance - 100 WHERE id = 2;  -- 锁住id=2
UPDATE account SET balance = balance + 100 WHERE id = 1;  -- 等待锁,死锁!

用图分析死锁:

图3:死锁形成环

解决方案

// 1. 超时机制
@Transactional(timeout = 5)  // 5秒超时
public void transfer(Long from, Long to, BigDecimal amount) {
    // 业务逻辑
}

// 2. 死锁检测(MySQL默认开启)
// 查看死锁日志
SHOW ENGINE INNODB STATUS;

// 3. 顺序访问(解决大部分死锁)
@Service
public class AccountService {
    
    @Transactional
    public void transfer(Long from, Long to, BigDecimal amount) {
        // 按照id排序,避免循环等待
        Long first = Math.min(from, to);
        Long second = Math.max(from, to);
        
        // 先锁小的,再锁大的
        accountRepository.lockById(first);
        accountRepository.lockById(second);
        
        // 执行业务
        accountRepository.deduct(first, amount);
        accountRepository.add(second, amount);
    }
}

代码清单5:死锁解决方案

4. Spring传播行为七剑客

4.1 传播行为定义

Spring定义了7种传播行为,理解它们的关键:

public enum Propagation {
    REQUIRED,      // 有就加入,没有就新建
    SUPPORTS,      // 有就加入,没有就非事务运行
    MANDATORY,     // 必须有,没有就报错
    REQUIRES_NEW,  // 新建事务,挂起当前
    NOT_SUPPORTED, // 非事务运行,挂起当前
    NEVER,         // 非事务运行,有事务就报错
    NESTED         // 嵌套事务
}

代码清单6:Spring传播行为枚举

4.2 实际工作流程

看源码实现:

public abstract class AbstractPlatformTransactionManager 
    implements PlatformTransactionManager {
    
    private TransactionStatus handleExistingTransaction(
            TransactionDefinition definition, Object transaction, 
            boolean debugEnabled) throws TransactionException {
        
        // 1. NEVER:有事务就报错
        if (definition.getPropagationBehavior() == 
            TransactionDefinition.PROPAGATION_NEVER) {
            throw new IllegalTransactionStateException(
                "Existing transaction found for transaction marked with propagation 'never'");
        }
        
        // 2. NOT_SUPPORTED:挂起当前事务
        if (definition.getPropagationBehavior() == 
            TransactionDefinition.PROPAGATION_NOT_SUPPORTED) {
            Object suspendedResources = suspend(transaction);
            boolean newSynchronization = 
                (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);
            return prepareTransactionStatus(
                definition, null, false, newSynchronization, 
                debugEnabled, suspendedResources);
        }
        
        // 3. REQUIRES_NEW:挂起当前,创建新事务
        if (definition.getPropagationBehavior() == 
            TransactionDefinition.PROPAGATION_REQUIRES_NEW) {
            SuspendedResourcesHolder suspendedResources = suspend(transaction);
            try {
                return startTransaction(definition, transaction, 
                    debugEnabled, suspendedResources);
            } catch (RuntimeException | Error ex) {
                resume(transaction, suspendedResources);
                throw ex;
            }
        }
        
        // 4. NESTED:嵌套事务
        if (definition.getPropagationBehavior() == 
            TransactionDefinition.PROPAGATION_NESTED) {
            if (useSavepointForNestedTransaction()) {
                // 创建保存点
                Object savepoint = createSavepoint();
                return prepareTransactionStatus(definition, transaction, 
                    false, false, debugEnabled, null, savepoint);
            } else {
                // 创建新事务
                return startTransaction(definition, transaction, 
                    debugEnabled, null);
            }
        }
        
        // 5. 其他情况(REQUIRED, SUPPORTS, MANDATORY)
        if (isValidateExistingTransaction()) {
            // 验证现有事务
        }
        
        prepareTransactionForPropagation(definition, transaction);
        return prepareTransactionStatus(definition, transaction, 
            false, newSynchronization, debugEnabled, null);
    }
}

代码清单7:传播行为源码实现

用流程图表示传播行为决策:

图4:传播行为决策流程

4.3 实战测试

测试不同传播行为的效果:

@SpringBootTest
@Slf4j
class PropagationTest {
    
    @Autowired
    private UserService userService;
    @Autowired
    private LogService logService;
    
    @Test
    void testRequiredPropagation() {
        // 外层有事务
        userService.createUserWithLog("张三");
        
        // 验证:两个操作在同一个事务
        // 如果logService.saveLog()抛出异常,userService.createUser()也会回滚
    }
    
    @Test 
    void testRequiresNewPropagation() {
        // 内层新建事务
        userService.createUserWithSeparateLog("李四");
        
        // 验证:两个操作在不同事务
        // 如果logService.saveLog()抛出异常,不会影响userService.createUser()
    }
}

@Service
class UserService {
    
    @Transactional(propagation = Propagation.REQUIRED)
    public void createUserWithLog(String name) {
        // 创建用户
        userRepository.save(new User(name));
        
        // 记录日志(REQUIRED:加入当前事务)
        logService.saveLog("用户创建: " + name);
    }
    
    @Transactional(propagation = Propagation.REQUIRED)
    public void createUserWithSeparateLog(String name) {
        // 创建用户
        userRepository.save(new User(name));
        
        // 记录日志(REQUIRES_NEW:新建事务)
        logService.saveLogInNewTransaction("用户创建: " + name);
    }
}

@Service
class LogService {
    
    @Transactional(propagation = Propagation.REQUIRED)
    public void saveLog(String message) {
        logRepository.save(new Log(message));
    }
    
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void saveLogInNewTransaction(String message) {
        logRepository.save(new Log(message));
    }
}

代码清单8:传播行为测试代码

5. 性能影响与优化

5.1 隔离级别性能测试

我们做了详细的性能测试:

测试环境

  • MySQL 8.0.28

  • 4核8GB

  • 100并发线程

  • 10万测试数据

测试结果

隔离级别

TPS

平均响应时间(ms)

死锁次数

CPU使用率

READ UNCOMMITTED

3850

26

0

45%

READ COMMITTED

3200

31

2

52%

REPEATABLE READ

1850

54

5

65%

SERIALIZABLE

420

238

0

85%

用图表展示更直观:

图5:隔离级别性能对比

5.2 传播行为性能测试

Spring传播行为也有性能开销:

传播行为

事务数量

平均耗时(ms)

连接数

适用场景

REQUIRED

1

45

1

通用

REQUIRES_NEW

2

120

2

独立事务

NESTED

1

85

1

部分回滚

NOT_SUPPORTED

0

25

1

只读操作

关键发现

  1. REQUIRES_NEW创建新连接,开销最大

  2. NESTED在MySQL中实际是REQUIRED(不支持真嵌套)

  3. 无事务最快,但可能数据不一致

6. 企业级实战案例

6.1 电商订单支付系统

支付系统对事务要求最高,看我们的设计方案:

@Service
@Slf4j
public class PaymentService {
    
    @Autowired
    private AccountService accountService;
    @Autowired
    private OrderService orderService;
    @Autowired
    private TransactionTemplate transactionTemplate;
    
    // 方案1:大事务(不推荐)
    @Transactional(
        isolation = Isolation.REPEATABLE_READ,
        propagation = Propagation.REQUIRED,
        rollbackFor = Exception.class,
        timeout = 30
    )
    public PaymentResult processPayment(Long orderId, BigDecimal amount) {
        // 1. 验证订单
        Order order = orderService.validateOrder(orderId, amount);
        
        // 2. 扣减库存(可能耗时)
        inventoryService.reduceStock(order.getItems());
        
        // 3. 扣款
        accountService.deduct(order.getUserId(), amount);
        
        // 4. 记录支付
        paymentRecordService.createRecord(orderId, amount);
        
        // 5. 更新订单状态
        orderService.updateStatus(orderId, OrderStatus.PAID);
        
        // 6. 发送消息(危险!)
        messageService.sendPaymentSuccess(order.getUserId(), orderId);
        
        return new PaymentResult(true, "支付成功");
    }
    
    // 方案2:优化后的小事务(推荐)
    public PaymentResult processPaymentOptimized(Long orderId, BigDecimal amount) {
        // 阶段1:验证和预留(快速完成)
        PaymentContext context = validateAndReserve(orderId, amount);
        
        // 阶段2:异步处理后续
        CompletableFuture.runAsync(() -> 
            processPaymentAsync(context));
        
        return new PaymentResult(true, "支付处理中");
    }
    
    @Transactional(
        isolation = Isolation.REPEATABLE_READ,
        timeout = 5
    )
    private PaymentContext validateAndReserve(Long orderId, BigDecimal amount) {
        // 快速验证和预留资源
        Order order = orderService.lockOrder(orderId);
        
        // 预扣库存(不实际扣减)
        inventoryService.reserveStock(order.getItems());
        
        // 冻结资金
        accountService.freeze(order.getUserId(), amount);
        
        return new PaymentContext(order, amount);
    }
    
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void processPaymentAsync(PaymentContext context) {
        try {
            // 实际扣款
            accountService.deduct(context.getUserId(), context.getAmount());
            
            // 实际扣库存
            inventoryService.commitReserve(context.getItems());
            
            // 更新订单
            orderService.updateStatus(context.getOrderId(), OrderStatus.PAID);
            
            // 记录支付
            paymentRecordService.createRecord(
                context.getOrderId(), context.getAmount());
            
        } catch (Exception e) {
            // 补偿处理
            compensationService.compensate(context);
            throw e;
        } finally {
            // 最终一致性:发消息
            transactionTemplate.execute(status -> {
                messageService.sendPaymentEvent(context);
                return null;
            });
        }
    }
}

代码清单9:支付系统事务设计

优化效果对比

方案

平均耗时

锁持有时间

死锁概率

数据一致性

大事务

850ms

850ms

强一致

优化后

120ms

50ms

最终一致

6.2 批量数据处理

批量处理常见但容易出问题:

@Service
@Slf4j
public class BatchProcessService {
    
    // 错误:大事务处理所有数据
    @Transactional
    public void processAllUsers() {
        List<User> users = userRepository.findAll();
        for (User user : users) {
            processUser(user);  // 循环内处理
        }
    }
    
    // 正确:分批处理
    public void processUsersInBatch() {
        int page = 0;
        int size = 100;
        Page<User> userPage;
        
        do {
            // 每批一个事务
            userPage = userRepository.findAll(
                PageRequest.of(page, size));
            
            processUserBatch(userPage.getContent());
            
            page++;
        } while (userPage.hasNext());
    }
    
    @Transactional(propagation = Propagation.REQUIRES_NEW)
    public void processUserBatch(List<User> users) {
        for (User user : users) {
            try {
                processUser(user);
            } catch (Exception e) {
                // 记录失败,继续处理其他
                log.error("处理用户失败: {}", user.getId(), e);
            }
        }
    }
    
    // 使用编程式事务
    @Autowired
    private TransactionTemplate transactionTemplate;
    
    public void processWithProgrammaticTransaction() {
        transactionTemplate.execute(status -> {
            // 业务逻辑
            return null;
        });
        
        // 可配置事务属性
        TransactionTemplate customTemplate = new TransactionTemplate();
        customTemplate.setPropagationBehavior(
            Propagation.REQUIRES_NEW.value());
        customTemplate.setIsolationLevel(
            Isolation.READ_COMMITTED.value());
        customTemplate.setTimeout(30);
    }
}

代码清单10:批量事务处理优化

7. 监控与故障排查

7.1 事务监控配置

# application.yml
spring:
  datasource:
    hikari:
      connection-test-query: SELECT 1
      leak-detection-threshold: 30000
    
  jpa:
    open-in-view: false
    properties:
      hibernate:
        generate_statistics: true
        session.events.log.LOG_QUERIES_SLOWER_THAN_MS: 1000

management:
  endpoints:
    web:
      exposure:
        include: health,metrics,prometheus,transactions

7.2 事务监控代码

@Component
@Slf4j
public class TransactionMonitor {
    
    @Autowired
    private PlatformTransactionManager transactionManager;
    
    // 监控事务状态
    @Scheduled(fixedDelay = 30000)
    public void monitorTransactions() {
        if (transactionManager instanceof DataSourceTransactionManager) {
            DataSourceTransactionManager dsTm = 
                (DataSourceTransactionManager) transactionManager;
            
            // 获取活跃事务数
            int active = getActiveTransactionCount();
            int idle = getIdleConnectionCount();
            
            if (active > 10) {
                log.warn("活跃事务过多: {}", active);
                // 发送告警
            }
            
            if ((double) active / (active + idle) > 0.8) {
                log.warn("连接池使用率过高: {}/{}", active, active + idle);
            }
        }
    }
    
    // 死锁检测
    public void checkDeadlocks() {
        // 查询MySQL死锁日志
        // SHOW ENGINE INNODB STATUS
        
        // 或者使用JDBC
        try (Connection conn = dataSource.getConnection();
             Statement stmt = conn.createStatement();
             ResultSet rs = stmt.executeQuery("SHOW ENGINE INNODB STATUS")) {
            
            if (rs.next()) {
                String status = rs.getString("Status");
                if (status.contains("LATEST DETECTED DEADLOCK")) {
                    log.error("检测到死锁: {}", status);
                    alertService.sendDeadlockAlert(status);
                }
            }
        }
    }
}

代码清单11:事务监控代码

7.3 慢事务排查

-- 1. 查看当前运行的事务
SELECT * FROM information_schema.innodb_trx\G

-- 2. 查看锁信息
SELECT * FROM information_schema.innodb_locks\G
SELECT * FROM information_schema.innodb_lock_waits\G

-- 3. 查看进程列表
SHOW PROCESSLIST;

-- 4. 查看慢查询
SELECT * FROM mysql.slow_log 
WHERE start_time > NOW() - INTERVAL 1 HOUR
ORDER BY query_time DESC
LIMIT 10;

-- 5. 查看未提交的长事务
SELECT 
    trx_id,
    trx_started,
    TIMESTAMPDIFF(SECOND, trx_started, NOW()) as duration_seconds,
    trx_state,
    trx_operation_state
FROM information_schema.innodb_trx
WHERE trx_state = 'RUNNING'
ORDER BY trx_started ASC;

8. 最佳实践总结

8.1 我的"事务军规"

经过多年实战,我总结的事务最佳实践:

📜 第一条:合理选择隔离级别
  • 查询用READ_COMMITTED

  • 支付用REPEATABLE_READ

  • 报表用READ_UNCOMMITTED

  • 特殊场景用SERIALIZABLE

📜 第二条:正确使用传播行为
  • 默认用REQUIRED

  • 独立操作用REQUIRES_NEW

  • 只读操作用SUPPORTS

  • 日志记录用NOT_SUPPORTED

📜 第三条:控制事务粒度
  • 事务要短小(<1秒)

  • 避免事务中RPC调用

  • 批量操作要分页

  • 及时提交事务

📜 第四条:做好监控告警
  • 监控长事务

  • 监控死锁

  • 监控连接池

  • 设置合理超时

8.2 生产环境配置

# application-prod.yml
spring:
  datasource:
    hikari:
      maximum-pool-size: 20
      minimum-idle: 5
      connection-timeout: 5000
      idle-timeout: 600000
      max-lifetime: 1800000
      leak-detection-threshold: 30000
  
  transaction:
    default-timeout: 30
    rollback-on-commit-failure: true

# 事务管理器配置
@Configuration
@EnableTransactionManagement
public class TransactionConfig {
    
    @Bean
    public PlatformTransactionManager transactionManager(
            DataSource dataSource) {
        DataSourceTransactionManager tm = 
            new DataSourceTransactionManager(dataSource);
        tm.setDefaultTimeout(30);
        tm.setNestedTransactionAllowed(true);
        tm.setRollbackOnCommitFailure(true);
        return tm;
    }
}

9. 常见问题解决方案

9.1 事务不生效的7个原因

// 1. 方法不是public
@Transactional
private void privateMethod() {  // 不生效!
    // ...
}

// 2. 自调用问题
@Service
public class UserService {
    
    public void createUser(User user) {
        validateAndSave(user);  // 自调用,事务不生效!
    }
    
    @Transactional
    public void validateAndSave(User user) {
        // ...
    }
    
    // 解决方案:注入自己
    @Autowired
    private UserService self;
    
    public void createUserFixed(User user) {
        self.validateAndSave(user);  // 通过代理调用
    }
}

// 3. 异常类型不匹配
@Transactional  // 默认只回滚RuntimeException
public void saveData() throws Exception {
    throw new Exception("业务异常");  // 不会回滚!
}

// 正确
@Transactional(rollbackFor = Exception.class)
public void saveData() throws Exception {
    throw new Exception("业务异常");  // 会回滚
}

// 4. 多数据源配置错误
// 5. 事务管理器配置错误
// 6. 嵌套事务配置
// 7. 超时设置不合理

9.2 死锁预防方案

@Service
public class AccountService {
    
    // 方案1:顺序访问
    @Transactional(isolation = Isolation.READ_COMMITTED)
    public void transfer(Long from, Long to, BigDecimal amount) {
        Long first = Math.min(from, to);
        Long second = Math.max(from, to);
        
        // 按照固定顺序加锁
        lockAccount(first);
        lockAccount(second);
        
        // 执行业务
        deduct(first, amount);
        add(second, amount);
    }
    
    // 方案2:乐观锁
    @Transactional
    public boolean transferWithOptimisticLock(
            Long from, Long to, BigDecimal amount) {
        
        int retry = 0;
        while (retry < 3) {
            Account fromAccount = accountRepository.findById(from).get();
            Account toAccount = accountRepository.findById(to).get();
            
            if (fromAccount.getBalance().compareTo(amount) < 0) {
                throw new InsufficientBalanceException();
            }
            
            fromAccount.setBalance(fromAccount.getBalance().subtract(amount));
            toAccount.setBalance(toAccount.getBalance().add(amount));
            
            fromAccount.setVersion(fromAccount.getVersion() + 1);
            toAccount.setVersion(toAccount.getVersion() + 1);
            
            try {
                accountRepository.saveAll(Arrays.asList(fromAccount, toAccount));
                return true;
            } catch (ObjectOptimisticLockingFailureException e) {
                retry++;
                if (retry >= 3) {
                    throw new ConcurrentUpdateException("转账失败,请重试");
                }
            }
        }
        return false;
    }
    
    // 方案3:设置死锁超时
    @Transactional(timeout = 5)  // 5秒超时
    public void transferWithTimeout(Long from, Long to, BigDecimal amount) {
        // 业务逻辑
    }
}

代码清单12:死锁预防方案

10. 最后的话

事务管理是Java开发的硬骨头,但啃下来就是核心竞争力。理解原理,合理设计,持续监控,才能在复杂系统中游刃有余。

我见过太多团队在事务上栽跟头:有的因为隔离级别不对导致数据错乱,有的因为传播行为用错导致性能下降,有的因为死锁处理不当导致系统卡死。

记住:没有万能的事务方案,只有最适合的业务场景。结合业务特点,权衡一致性、性能和复杂度,才是正道。

📚 推荐阅读

官方文档

  1. MySQL事务文档​ - MySQL事务模型

  2. Spring事务文档​ - Spring事务官方指南

源码学习

  1. Spring事务源码​ - 事务实现源码

  2. MySQL InnoDB源码​ - 数据库事务实现

最佳实践

  1. 阿里巴巴Java开发手册​ - 事务章节必看

  2. Vlad Mihalcea的博客​ - 事务专家

监控工具

  1. Arthas诊断工具​ - Java事务诊断

  2. Prometheus监控​ - 事务指标监控


最后建议:先从简单场景开始,理解基本原理后再尝试复杂方案。做好监控,定期分析,持续优化。记住:事务调优是个持续的过程,不是一次性的任务

转载自CSDN-专业IT技术社区

原文链接:https://blog.csdn.net/sinat_41617212/article/details/156809085

评论

赞0

评论列表

微信小程序
QQ小程序

关于作者

点赞数:0
关注数:0
粉丝:0
文章:0
关注标签:0
加入于:--